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Abstract

Growing interest in magnetic resonance imaging (MRI) at ultra-low magnetic fields (ULF, �lT fields) has been motivated by
several advantages over its counterparts at higher magnetic fields. These include narrow line widths, the possibility of novel imaging
schemes, reduced imaging artifacts from susceptibility variations within a sample, and reduced system cost and complexity. In addi-
tion, ULF NMR/MRI with superconducting quantum interference devices is compatible with simultaneous measurements of bio-
magnetic signals, a capability conventional systems cannot offer. Acquisition of MRI at ULF must, however, account for
concomitant gradients that would otherwise result in severe image distortions. In this paper, we introduce the general theoretical
framework that describes concomitant gradients, explain why such gradients are more problematic at low field, and present possible
approaches to correct for these unavoidable gradients in the context of a non-slice-selective MRI protocol.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Conventional approaches to magnetic resonance
imaging (MRI) have generally pushed systems to ever
higher magnetic field strengths [1]. Higher magnetic
fields (commonly 3–10 T or more) are sought to improve
signal-to-noise by increasing sample polarization and
Larmor frequencies (xL, which results in higher signal
amplitude in Faraday induction receiver coils). Higher
imaging fields also increase resolution since as the signal
amplitude increases, smaller voxels will generate the
same signal-to-noise. More recently, we have seen
increasing interest and progress in ultra-low field
(ULF, �lT fields) NMR and MRI. ULF MRI has been
motivated by a variety of potential benefits such as smal-
ler magnetic field induced artifacts, narrow NMR line-
widths, simultaneous detection of multiple nuclei, and
the prospect of systems with reduced cost and size [2].
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Such systems could be portable and the sample need
not be restricted to the interior of a magnet bore (ex situ
or ‘‘inside out’’ imaging). Low-field methods even en-
able imaging using the earth�s magnetic field, �50 lT
[3–8]. Other motivators include the desire to avoid com-
plications associated with high-field MRI of samples
and subjects containing metal (i.e., metal pins or im-
plants), that would be essentially eliminated at low
fields. Not only can samples containing metal be imaged
at ULF, but we recently demonstrated that samples en-
tirely contained within metallic containers can be im-
aged at ULF [9].

Magnetic resonance imaging at ULF also offers other
advantages. Measurement fields (the fields about which
the nuclei of interest precess) need not be extremely
homogeneous to achieve narrow NMR linewidths. The
NMR linewidth scales linearly with the measurement
field strength for a fixed relative homogeneity allowing
the possibility of very narrow NMR lines with high sig-
nal-to-noise at ULF [10]. Narrow NMR linewidth en-
ables high-resolution imaging with minimal field
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gradients. Susceptibility artifacts, caused by coupling
between the applied magnetic field and varying suscepti-
bility within the sample, broaden resonance lines at high
fields but are negligible at ULF. The absence of such
artifacts should provide opportunities for novel forms
of static and functional imaging at ULF such as the pos-
sibility of manipulating T1 contrast to provide signifi-
cant contrast not always realized at high fields [11]. All
of these effects combine to offer the prospect that MRI
at low fields may provide a regime of high sensitivity
and resolution, with unique applications.

NMR and MRI detect the magnetic signature of nu-
clear spins precessing in the measurement magnetic field
at the characteristic Larmor frequency, xL. The diffi-
culty of detecting NMR/MRI signals at ULF is primar-
ily due to the decreased spin polarization. Conventional
systems using Faraday detection would suffer further
reduction of signal amplitude because the induced volt-
age scales linearly with xL, which is proportional to the
measurement field. The superconducting quantum inter-
ference device (SQUID) is a magnetic flux-to-voltage
converter of exquisite sensitivity with a response that
is independent of frequency. Consequently, a growing
number of low-field NMR/MRI systems have employed
SQUID sensors at measurement fields below 10 mT,
(e.g., [9,10,12–21]). The frequency-independent response
of SQUID detectors readily enables one to simulta-
neously detect the signatures from multiple nuclei, even
when their NMR frequencies may differ by factors of
two or more [22].

Finally, demonstrating ULF MRI enables the possi-
bility of acquiring tomographic images simultaneously
with sub-millisecond temporal resolution biomagnetic
measurements such as magnetoencephalography
(MEG) [23]. Acquiring biomagnetic and anatomical
data simultaneously will largely eliminate most of the
sources of error in co-localizing these data which are
currently acquired on separate instruments (such as
MEG and conventional anatomical MRI). The co-local-
ization error is commonly an order of magnitude greater
than the instrumental resolution of MRI or state-of-the-
art MEG [24]. This advance will revolutionize functional
brain source localization accuracy for both MEG and
EEG.

Various investigators, including ourselves, have al-
ready demonstrated that ULF MRI is possible (see for
example, [8,18,20,21]). We also demonstrated the feasi-
bility of magnetic resonance measurements with simulta-
neous magnetoencephalography (MEG), using the same
detectors [23], and simultaneous NMR and magnetocar-
diography (MCG) and magnetomyography (MMG)
[22]. These measurements constitute scientific advances
necessary to derive bioelectric source localization and
anatomical MRI from simultaneously acquired data.

A significant problem encountered at ULF is poten-
tially large distortions caused by concomitant gradients,
that is gradients in the directions transverse to the
desired (longitudinal) gradient. MRI has traditionally
depended on generating linear magnetic field gradients
[25] across the sample that cause all of the nuclei within
a given planar volume to precess at the same xL. Thus,
by acquiring signal within a specific frequency window,
one naturally selects signal originating only from nuclei
within a planar region of the sample commonly referred
to as a �slice.� Maxwell�s equations predict that any coil
system generating gradients dBz/dx, dBz/dy, or dBz/dz
will always generate gradients of transverse components:
dBx/dx, dBx/dy, etc., that have the same field strength as
Bz gradients. If we denote the uniform measurement
field at the origin as B0, the magnitude of the longitudi-
nal (‘‘useful’’) gradient as Gi and magnitude of the
transverse (‘‘concomitant’’) gradients as G^, then we
may approximate the frequency variation (spatial
encoding) as:

Dm ¼ c
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB0 þ GkÞ2 þ G2

?

q
� B0

� �
: ð1Þ

In typical MRI applications, the desirable frequency
encoding is a result of the longitudinal component of ap-
plied gradients. We can approximate the frequency
variation as:

Dm � c
2p

Gk

� �
þ c

2p
1

2

1

B0 þ Gk
G2

?

� �
¼ Dmk þ Dm?: ð2Þ

For MR imaging in high fields (B0 � 1 T), typical values
of these gradients are dB/dz � 2 · 10�2 T/m, and a re-
gion of interest (ROI) of size D � 0.5 m. For such a typ-
ical case, Gi/B0 � 1, G^/B0 � 1, Dm^/Dmi < 0.01, and we
see that Dm � (c/2p)Gi, i.e., the frequency variation is
proportional only to the longitudinal gradients, the
common assumption in high-field MRI.

For an ultra-low field MRI scanner, assuming operat-
ing parameters of: B0 � 10�4 T, dB/dz � 10�4 T/m, and
a smaller volume D � 0.2 m, we see the range of Larmor
frequencies for the longitudinal gradient would be
Dmk � 851 Hz and the impact of concomitant gradients
would result in Dm^ � 84 Hz. In this example, the fre-
quency shift resulting from the concomitant gradients
reaches 10% of total frequency shift due to the primary
gradient, even for a small ROI. Concomitant gradients
in ULF MRI will clearly result in significant distortions
of the frequency and phase encoding relative to the sim-
ple planar model of gradients. These gradients will result
in correspondingly large displacement and distortion
artifacts that must be accounted for in any ULF MRI
approach.

Previous studies of concomitant gradient effects and
corrections [26], assumed the direction of the measure-
ment field is unperturbed by the gradient, focusing
instead on the effect that the amplitude change has on
encoding phase. In this paper, we examine the impact
that ‘‘deflection’’ of the magnetic field has on the
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precession. While previous methods to correct for the
concomitant phase use parabolic approximations [27],
we present a more accurate reconstruction method and
compare it to the previous techniques. Our work will
be presented in the context of an example of non-slice
selective gradient echo MRI protocol. While we have
chosen a specific example to illustrate the quantitative
effects of concomitant gradients, our approach can be
applied to other sequences and protocols.

In the following sections, we first present the basic
theory and the common assumptions for both high-
and low-field cases, then demonstrate the significant
distortions that occur uniquely at low fields. We pres-
ent examples of the point spread function (PSF) for
both high and low fields, then show novel improve-
ments for more accurately calculating the PSF which
is used to correct the concomitant gradient
distortions.
2. Theory

2.1. Concomitant gradients

We begin by considering a system of coils that gener-
ate the fields and gradients in the volume of interest,
such as those shown in Figs. 1 and 2. These and other
similar systems widely used in MRI produce fields and
gradients that are axi-symmetric with an origin placed
in the plane of symmetry. Since the volume is source
free, the Maxwell�s equations must hold:

r� BðrÞ ¼ 0 and r � BðrÞ ¼ 0: ð3Þ

In the case of ideal linear gradients, i.e., $Bz (r) = g, a
cylindrical geometry [28], and assuming initial condition
Bð0Þ ¼ B0êz, we can express the magnetic field as:

BðrÞ ¼ B0êz þG � r: ð4Þ
Fig. 1. Diagram of a Maxwell coil and the longitudinal gradient field prod
direction of the primary field (longitudinal gradient dBz/dz).
The gradient matrix is:

G ¼
�gz=2 0 gx

0 �gz=2 gy
gx gy gz

264
375; ð5Þ

or separating the desirable longitudinal gradient g from
the concomitant gradients yields the equivalent form:

BðrÞ ¼ ðB0 þ ðg � rÞÞêz þGcr; ð6Þ
where

g ¼
gx
gy
gz

264
375; Gc ¼

�gz=2 0 gx
0 �gz=2 gy
0 0 0

264
375: ð7Þ

The resulting instantaneous Larmor frequency for spins
in the volume is given by

xðr; gÞ ¼ �c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB0 þ ðg � rÞÞ2 þ kGcrk2

q
; ð8Þ

and if |B0| � | (gr)|, then x (r,g) @ �c (B0 + (g Æ r)).
These results can be illustrated for typical gradient

coil designs. Linear variation in field along the direction
of the field (longitudinal gradient dBz/dz) is readily pro-
duced by a simple Maxwell coil (Fig. 1). Linear varia-
tion in the direction orthogonal to the field (transverse
gradient dBz/dq) is best generated by a somewhat more
complex saddle-coil, such as the Golay coil (Fig. 2).

2.2. Effects of the concomitant gradients in the gradient

echo technique

The gradient echo pulse sequence is a common pulse
sequence used in modern high-field MRI. The specific
pulse sequence we will use to illustrate concomitant gra-
dient effects consists of an initial RF pulse to tilt the spin
population in the region of interest (ROI), followed by
pulses Gx and Gy to provide the phase-encoding gradi-
ents in the presence of a frequency encoding gradient,
uced by such a coil set. The field varies linearly (gradient) along the



Fig. 2. Diagram of a Golay coil and the transverse gradient field produced by such a coil set. The field varies linearly (gradient) along the direction
orthogonal to the field (transverse gradient dBz/dq).
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Gz The phase encoding gradients are applied in a large
number of discrete values (typically 256 up to 512) to
sample the applicable k-space. At time tph, Gx, and Gy

are turned off and the sign of Gz is reversed, causing
the phases in each voxel to refocus at time 2 · tph, result-
ing in the echo signal. The gradient Gz also provides fre-
quency encoding in the Z-dimension. The image is
reconstructed by 3D inverse Fourier transform. We will
use a traditional gradient echo sequence, illustrated in
Fig. 3, as a basis for discussing the effect of concomitant
gradients on MRI image quality. The exact manifesta-
tion of the distortions caused by the concomitant gradi-
ents will depend upon the actual technique employed.
While we choose a traditional gradient echo technique
to illustrate the impact of concomitant gradients on im-
age quality and the effectiveness of various approaches
to correcting the distortions, the theoretical framework
and approaches to correcting the distortions presented
here are completely general.

We assume that a magnetization field m (r, t) is pres-
ent in the volume at time t = 0 and that a measurement
field B (r) has been applied to the volume. The conven-
tional assumption at this point is to assume that the gra-
dients have no effect on the field orientation, i.e.,
BðrÞ ffi B0êz, simplifying the solution of the Bloch equa-
tion. Here, we retain the ‘‘deflection’’ of the field caused
by the gradients to analyze its impact on the measured
Fig. 3. A typical 3D gradient echo sequence used as a reference to illustra
signal. To analyze effects of the concomitant gradients
we will neglect relaxation times. For a given magnetiza-
tion m (r, t) and an applied magnetic field B (r, t), the
Bloch equation [29] is:

d

dt
mðr; tÞ ¼ cð½mðr; tÞ � Bðr; tÞ	Þ; ð9Þ

where c is the gyromagnetic ratio. If the orientation of
B (r, t) does not change with time, then we can write
Bðr; tÞ ¼ Bðr; tÞêðrÞ, i.e., the amplitude of the magnetic
field may change, but not the orientation êðrÞ. The Bloch
equation can then be written:

d

dt
mðr; tÞ ¼ � cBðr; tÞ½êðrÞ �mðr; tÞ	

¼ xðr; tÞðAðrÞ �mðr; tÞÞ; ð10Þ

where x (r, t) ” �cB (r, t) is the Larmor frequency, and
A (r) is the matrix representation of the cross product,
given by:

AðrÞ ¼
0 �ezðrÞ eyðrÞ

ezðrÞ 0 �exðrÞ
�eyðrÞ exðrÞ 0

264
375; ð11Þ

where the orientation of êðrÞ depends on the total ap-
plied magnetic field. We note that this treatment is valid
for the acquisition of a single line of data because the
gradient strength does not change with time during the
te computed concomitant gradient effects for a general application.
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phase encoding or the measurement steps. The eigenvec-
tors of the matrix A may be expressed as:

vl : A � vl ¼ klvl; l ¼ �1; 0; 1;

fklg1�1 
 f�i; 0; ig; i ¼
ffiffiffiffiffiffiffi
�1

p
;

ð12Þ

where we note that v�1 ¼ v�1, v0 ¼ êðrÞ, and the set of
eigenvectors form an orthonormal basis. The rotation
of the magnetization vector, using m0 (r) ” m (r, t = 0),
is then described as:

mðr; tÞ ¼
X1
l¼�1

e
il
R t

0
xðr;t0Þ dt0

vlðv�l �m0ðrÞÞ: ð13Þ

Finally, the MRI signal one would measure can be
expressed as

SðtÞ ¼
Z
V
qðr0Þðp� �mðr0; tÞÞd3r0; ð14Þ

where p ” p(r) ” (px,py,pz) is the sensitivity model of the
receiver or sensor, and q (r) is spin (nuclear) density.
Substituting Eq. (13) into Eq. (14), our rotation model
yields:

SðtÞ ¼
X1
l¼�1

Z
V
qðr0Þðp� � vlÞðv�l �m0Þeil

R t

0
xðr0 ;t0Þ dt0

d3r0;

ð15Þ
where ðp� � vlÞðv�l �m0Þ is total spatial sensitivity of the
system. If we further assume that the measurement field
remains constant, then the Larmor frequency is con-
stant, yielding

R t
0
xðr; t0Þdt0 ¼ xðrÞt. Thus, the magneti-

zation vector at time t may be expressed as
mðr; tÞ ¼

P1
l¼�1e

ilxðrÞtvlðv�l �m0ðrÞÞ.
Let us now consider the specific gradient echo pulse

sequence as outlined in Fig. 3. The gradient echo tech-
nique consists of two steps: (1) phase encoding between
time 0 and tph, and (2) measurement from tph to tm.
The magnetic field is described by Eq. (6). Assuming
the gradients (and the total field) are held constant dur-
ing each step, the resulting MRI signal can be written
as:

SðtÞ ¼
X1
l¼1

X1
l0¼�1

Z
V
qðr0Þðp� � ulÞðu�l � vl0 Þðv�l0 �m0Þ

� eilxmteil
0xphtph d3r0; ð16Þ

where fvl 
 vlðr; gphÞg
1
�1 and ful 
 ulðr; gmÞg

1
�1 are

eigenvectors of the matrix A determined for the gradi-
ents gph and gm applied during phase encoding and mea-
surement portions of the pulse sequence, respectively.
This measurement is repeated for multiple phase encod-
ing and measurement fields BðrÞ ¼ ðB0 þ ðg � rÞÞêz þ
Gc � r, as depicted graphically in Fig. 3, where the
concomitant gradients are completely specified by the
longitudinal gradients, g. Similarly, xph ” xph (r,gph)
and xm ” xm(r,gm) are the Larmor frequencies of spins
in the volume of interest during phase encoding and
measurement, respectively.

The Larmor frequencies of spins can be written as:

xðr; gÞ ¼ �ðcB0 þ cðg � rÞ þ Dxðr; gÞÞ; ð17Þ
where, Dx (r,g) is the additional frequency shift that oc-
curs due to the concomitant gradients,

Dxðr; gÞ ¼ �c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB0 þ g � rÞ2 þ jGcrj2

q
� ðB0 þ g � rÞ

� �
:

ð18Þ

Using quadrature phase sensitive detection, the complex
MRI signal eSðt; gph; gmÞ, defined as eSðt; gph; gmÞ 

lowpassfSðt; gph; gmÞe�ix0tg, where x0 = �cB0, can be
written using Eq. (16) as:

eSðt; gph; gmÞ ¼ X1
l¼�1

eilx0tph

Z
V
qðr0Þðp� � uþ1Þðu�þ1 � vlÞ

� ðv�l �m0Þe�i�ðcðgm�r0ÞþDxmÞt

� e�ilðcðgph�r0ÞþDxphÞtph d3r0; ð19Þ

where only terms with u+1 survive the lowpass filter and
gph and Dxph are the gradient and frequency shift due to
concomitant gradients during phase encoding step,
respectively; and gm and Dxm are the gradient and fre-
quency shifts due to concomitant gradients during mea-
surement, respectively. We now transform eS from
(t,gph,gm) coordinate space into k-space using
k = c (gmt + gphtph) and kph = cgphtph, giving:

eSðkÞ ¼ X1
l¼�1

eilix0tph

Z
V
qðr0Þðp� � uþ1Þðu�þ1 � vlÞðv�l �m0Þ

� e�iðk�r0Þe�iðl�1Þðkph�r0Þe�iðumþluphÞ d3r0; ð20Þ

where the phase shifts um ” um(r,k) = Dxmt and uph ”
uph (r,k) = Dxphtph are due to concomitant gradients
applied during the phase encoding and measurement
portions of the sequence, respectively. uph results from
concomitant gradients of all applied gradients, while
um results from concomitant gradients of gz (see Fig. 3).

The reconstructed image may be found using an in-
verse Fourier transform, ~qðrÞ ¼

R
Ke

ik�reSðkÞd3k, giving:

~qðrÞ ¼
Z
V
qðr0Þ

X1
l¼�1

eilx0tph

Z
K
ðp� � uþ1Þðu�þ1 � vlÞðv�l �m0Þ

� e�iðk�ðr0�rÞÞe�iðl�1Þðkph�r0Þe�iðumþluphÞ d3kd3r0: ð21Þ

That is, the reconstructed image is represented by a lin-
ear operator acting on the original spin density distribu-
tion described by:

~qðrÞ ¼
Z
V
qðr0ÞKðr; r0Þd3r0; ð22Þ

where the kernel of the operator (or point spread func-
tion) is:
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Kðr; r0Þ ¼
X1
l¼�1

eilx0tph

Z
K
ðp� � uþ1Þðu�þ1 � vlÞðv�l �m0Þ

� e�iðk�ðr0�rÞÞe�iðl�1Þðkph�r0Þe�iðumþluphÞ d3k: ð23Þ

During the acquisition of a single line of data, eigenvec-
tors of the infinitesimal rotation matrix ul do not explic-
itly depend on k. Using definition of k-space variables to
express t as a function of k and recollecting that gmkêz,
the phase shift due to concomitant gradients during this
step equals:

um ¼ ðk � Dr0Þ þ /; Dr0 
 Dr0ðr0Þ ¼ Dxm

cðgm � êzÞ
êz;

/ 
 /ðr0Þ ¼ �Dxm

ðgph � êzÞ
ðgm � êzÞ

tph: ð24Þ

Taking this into account, the Eq. (23) can be re-written as:

Kðr; r0Þ ¼ e�i/
X1
l¼�1

eilx0tph

Z
K
Qlðr0; kÞe�iðk�ðr0þDr0�rÞÞ

� e�iðl�1Þðkph�r0Þe�iluph d3k; ð25Þ

where Qlðr0; kÞ ¼ ðp� � uþ1Þðu�þ1 � vlÞðv�l �m0Þ. In previ-
ously derived descriptions of concomitant gradients,
the magnetization deflection is ignored and Qlðr0; kÞ ¼
ðp� � ~eþ1Þð~e�þ1 �m0Þdþ1;l; ~e0 ¼ êz; ~e�1 ¼ ðêx � iêyÞ=

ffiffiffi
2

p
is as-

sumed. To better illustrate the improvements in the PSF
derived here over previously described effects of con-
comitant gradients we write the eigenvector product as:

Qlðr0; kÞ ¼ Q0
þ1ðr0Þðdþ1;l þ elðr0; kÞÞ; ð26Þ

where Q0
þ1ðr0Þ ¼ ðp� � ~eþ1Þð~e�þ1 �m0Þ is total spatial sensi-

tivity in the ideal case and el (r 0,k) is the consequence
of the magnetic field deflection. At high field, the com-
mon assumption is that el (r 0,k) is zero; however, at
low field this vector deflection can result in noticeable
distortion as we will discuss further below.

We express the point spread function as a sum of 4
components:
Fig. 4. Geometrical (left) and multiplicative (right) measurement distortio
function of relative position within the sample volume (region of interest). G
where the applied gradient field approaches half of the measurement field a
for such a case.
Kðr; r0Þ ¼ Kþðr; r0Þ þ eKþðr; r0Þ þ K�ðr; r0Þ þ K0ðr; r0Þ;
ð27Þ

where:

þðr; r0Þ ¼ Q0
þ1ðr0Þe�ið/þx0tphÞ

Z
K
e�iðk�ðr0þDr0�rÞÞe�iuph d3k;

eþðr; r0Þ ¼ Q0
þ1ðr0Þe�ið/þx0tphÞ

�
Z
K
eþ1ðr0; kÞe�iðk�ðr0þDr0�rÞÞe�i�uph d3k;

�ðr; r0Þ ¼ Q0
þ1ðr0Þe�ið/�x0tphÞ

�
Z
K
e�1ðr0; kÞe�iðk�ðr0þDr0�rÞÞei2ðkph�r

0Þeiuph d3k;

0ðr; r0Þ ¼ Q0
þ1ðr0Þe�i/

�
Z

e0ðr0; kÞe�iðk�ðr0þDr0�rÞÞeiðkph�r
0Þ d3k:

ð28Þ
The K+(r, r
0) term is similar to the conventional PSF;

however it includes the effect of a more precise expression
for the frequency shift Dxm that is implicit in the phase,
uph, and Dr 0. In addition, while terms eKþðr; r0Þ, K� (r, r

0),
and K0 (r, r

0) are assumed to be negligible at high field,
they contribute noticeable distortions at low field. We
shall describe and illustrate with simulations the manifes-
tation of each of these terms in the following section.

2.3. Simulation and analysis

From Eqs. (25) and (28) it will become evident that
the distortion of an image due to concomitant gradients
during the measurement step (distortions along fre-
quency encoded dimension) does not introduce blurring
of the image and is limited to reversible geometrical
q (r) ) q (r + Dr) and multiplicative q (r) ) f (r)q (r) dis-
tortions. The magnitude of these distortions as a func-
tion of the gradient/field ratio is shown in Fig. 4. For
our example gradient echo sequence, the displacement
ns (as defined in the text) due to concomitant gradients shown as a
eometrical distortions caused by concomitant gradients approach 7%
t the outer extent of the ROI. Multiplicative distortions approach 3%



Fig. 5. A comparison of computed distortions due to frequency shift caused by concomitant gradients in the phase encoding step of a gradient echo
image for three different distances from the origin along the frequency encoding axis (figure columns). The figure rows represent typical high-field and
ULF MRI examples, respectively: (row A) B0 = 1 T, max |g| = 2 · 10�2 T/m; (row B) B0 = 1 · 10�4 T, max |g| = 50 · 10�6 T/m.

1 Width and displacement of the PSF are estimated using the
following integral:Z 1=ð2DxÞ

�1=ð2DxÞ
ei2pðkxþa2ðkþbÞ2Þ dk ¼ 1

2a
e�i2p 1

4�
x
að Þ2�a2b2

� �
½Cðnþ x=aþ 2abÞ

� iSðnþ x=aþ 2abÞ	a=Dx�a=Dx;

where C (x) and S (x) are Fresnel integrals. Fresnel integrals are anti-
symmetrical functions, so the width of the functions
C (a + x + b) � C (�a + x + b) and S (a + x + b) � S (�a + x + b) are
symmetrical with respect to n = x + b, and the width of these functions
at half height is equal to 2a.
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distortions from the concomitant gradients amount to
7% of the region-of-interest (ROI) while the variation
of spatial sensitivity amounts to only 3% of the ROI,
even for very large gradient/field ratios. Reconstructing
high-quality images must correct for these effects.

Distortions caused during the phase encoding step by
the scalar products ðuþþ1 � vlÞðvþl �m0Þ—the magnetic field
deflection—and by the frequency shift due to concomi-
tant gradients, introduce blurring along phase encoding
dimensions because these functions depend on k. Fig. 5
clearly illustrates the dramatic difference between distor-
tions caused by concomitant gradients at typical high
field compared with ULF MRI. Distortions caused by
frequency shift during phase encoding (i.e., due to e�iuph

term) are illustrated in the Fig. 6, where a test image
consisting of a uniform grid of spin density delta-func-
tions in the plane of phase encoding dimensions.

While there is no qualitatively obvious distortion for
any of the regions of interest (h) at high field, distortions
are obvious and severe by h = 10 cm for the ULF case.
At high fields, there is little need to correct for distor-
tions caused by concomitant gradients, consequently lit-
tle attention has been paid to this correction beyond first
order effects [30]. At ULF, however, concomitant gradi-
ents severely distort the images and careful corrections
of these effects to high order must be derived and imple-
mented. It can be shown that the distortions due to con-
comitant gradients during phase encoding step are
defined by two dimensionless parameters: a = max|g|h/
Bz and ~h ¼ h=a, where h is the distance to the symmetry
plane of phase encoding gradient coils, and image resolu-
tion, a, is defined according to the Nyquist criteria:
a ¼ 1

2ðc=2pÞmax jgjtph
ð29Þ

and Bz = B0 � max |g|h.
To describe the overall characteristic of these dis-

tortions, we will use two parameters: (a) the width
of the module of point spread function at half
height (Dw), and (b) the displacement of the PSF
maximum (Dd). For high-field MRI scanners
(B0 � |g|R) it is common to retain only lowest order
concomitant gradient terms in Eq. (18) to correct for
the distortions:

Dxðr; gÞ � �c
1

2
� kGc � rk2

B0

: ð30Þ

Using this approximation of the frequency shift due to
concomitant gradients, it can be shown1 that the width
of the PSF linearly depends on a product of the param-
eters a and ~h:



Fig. 6. A comparison of the point spread function due to frequency shift caused by concomitant gradients in the phase encoding step of a gradient
echo image for three different distances from the origin along the frequency encoding axis (figure columns). The figure rows represent typical high-
field and ULF MRI examples, respectively: (row A) B0 = 1 T, max |g| = 2 · 10�2 T/m; (row B) B0 = 1 · 10�4 T, max |g| = 50 · 10�6 T/m.

110 P.L. Volegov et al. / Journal of Magnetic Resonance 175 (2005) 103–113
Dw ¼ 2a~h ¼ 2max jgjh2

Bza
: ð31Þ

The displacement of the PSF center is:

Dd ¼ max jgjhr
Bz

; ð32Þ

where r is a displacement from the image center.
As we observed above, while the parabolic approxi-

mation (Eq. (30)) is adequate to correct for distortions
caused by concomitant gradients at high-field MRI
application, it is inadequate for ULF MRI. Signifi-
cantly, better results can be achieved by expanding
Eq. (18) about jGcrj=B0 þ g � r, keeping the first-order
terms, and using:

Dxðr; gÞ � �c
1

2
� kGc � rk2

B0 þ g � r : ð33Þ

Fig. 7 illustrates ULF MRI computed images for dif-
ferent approximations of the distortions caused by con-
comitant gradients at two different gradients. Column A
are the computed images including an exact representa-
tion of the distortions caused by concomitant gradients
as presented in Eq. (18). The distortions included in the
parabolic approximation (Eq. (30)) is shown in Fig. 7,
column B and the more precise approximation derived
here (Eq. (33)) is shown in Fig. 7, columns C. The
images in Fig. 7 were computed for a ULF MRI mea-
surement field of B0 = 1 · 10�4 T, and two different gra-
dients and sample sizes: max |g| = 50 · 10�6 T/m and
h = 15 cm (row 1), and max |g| = 100 · 10�6 T/m and
h = 10 cm. A larger sample size, h, is used for the smaller
gradient computation for visualization purposes. It is
immediately evident that the parabolic approximation
grossly underestimates the actual distortions (illustrated
in the exact calculation, Fig. 7, column A) caused by
concomitant gradients at ULF, while the more precise
approximation of Eq. (33) estimates the distortions
quite accurately. Thus, Fig. 7 dramatically demonstrates
that a parabolic approximation will not be sufficient to
correct for concomitant gradient distortions at ULF.

The distortion represented by each term of Eq. (28) is
illustrated in Fig. 8. The �true� image is shown in the
upper left frame, the primary image, K+ is shown in
frame �A,� and the distortions eKþðr; r0Þ, K�(r, r

0), and
K0(r, r

0) are illustrated in frames �B,� �C,� and �D,� respec-
tively. The distortion effect of the eKþðr; r0Þ term repre-
sents a slightly increased blurring of the primary
image, K+. The K0 (r, r

0) term describes the effect of con-
comitant field deflection causing a portion of the de-
flected polarization vector not to precess about the
measurement field, hence that portion of the polariza-
tion population is not phase encoded and remains at
the origin. The K� (r, r

0) term represents a ‘‘Nyquist
ghost’’ image that appears reflected across the plane of
symmetry.

Distortions caused by the deflection of magnetic field
away from z-axis during phase encoding and measure-
ment steps are described by the terms eKþðr; r0Þ, K�(r, r

0),
and K0(r, r

0) (Eq. (28)). To quantitatively assess the effect
of deflections of the magnetization field, we choose an



Fig. 7. A comparison of the computed distortions caused by concomitant gradients in gradient echo ULF images (B0=1 · 10�4 T) at two different
gradients and for different concomitant gradient approximations. (row 1) max |g| = 50 · 10�6 T/m, h = 15 cm, (row 2) max |g| = 100 · 10�6 T/m,
h = 10 cm. The columns illustrate the distortions computed using the exact representation of concomitant gradients (column A), the parabolic
approximation (column B), and the more precise approximation (defined in the text, column C). It is immediately clear that the distortions computed
using a parabolic approximation (column B) do not accurately represent the real distortions (column A) while the approximation we derived (column
C) accurately represents them.
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initial magnetization m0, and coil sensitivity p aligned
along x-axis, and using only the lowest order of magni-
tude terms we have:

eþ1ðr;kÞ¼
a2

2
ðð~kx�bxÞ� ið~ky�byÞÞ2þOða4Þ;

e0ðr;kÞ¼2a2ð~kx�bxÞðð~kx�bxÞþ ið~ky�byÞÞþOða4Þ;

e�1ðr;kÞ¼a2 ð~kx�bxÞ2þðð~kx�bxÞþ ið~ky�byÞÞ2

2

 !
þOða4Þ;

ð34Þ

where ~k ¼ ak, b = gz/4max |g|h and we recall
a = max |g|h/Bz. A sense of the magnitude of these dis-
tortions can be gained by simulating an ULF MRI im-
age acquired using the following parameters:
(B0=1 · 10�4 T, max |g| = 50 · 10�6 T/m, h = 20 cm).
We find the maximum distortion caused by the deflec-
tion of the magnetization vector to be 1% for each term
in the point spread function (eKþðr; r0Þ, K� (r, r

0), and
K0 (r, r

0)) relative to the main term K+(r, r
0). Alterna-

tively, one can state that ignoring magnetization deflec-
tion caused by concomitant gradients will cause up to
3% of the spin density of the actual object is mislocal-
ized. While this effect is relatively small, the effect grows
quadratically with the region of interest size (due to the
a2 term in Eq. (34)). Additionally, more dramatic effects
will be seen for objects with high-spin densities near the
periphery of the ROI.
3. Discussion and conclusions

The pursuit of MRI at ULF by our group and others
has necessitated a re-examination of distortions caused
by concomitant gradients. We introduce the general the-
oretical framework describing concomitant gradients for
MRI imaging systems from which we derive a model of
the effect of concomitant gradients on image distortion
that is more precise than previously published treatises
of the subject. While ignoring the magnetization vector
deflection and using a simple parabolic approximation
for Dx (r,g) are sufficient to compute high-resolution
images from high-field MRI measurements, we have
shown that such simple corrections are insufficient to
correct for these distortions at low- and ultra low-fields.
We presented a model that includes a more precise
description of frequency (and resulting phase) distor-
tions than previous parabolic approximations. In addi-
tion, we describe the deflection of the magnetization
vector caused by concomitant gradients that has hereto-
fore been ignored. Utilizing these more accurate repre-
sentations of concomitant gradients in computing
images from magnetic resonance data is necessary to
realize high-resolution MRI at ultra low-magnetic fields.

Acquisition of MRI at ULF must accurately account
for concomitant gradient induced effects on both fre-
quency and total magnetization vector that result in se-
vere image distortions. We have presented a detailed
analysis of the mathematical description of concomitant



Fig. 8. Illustration of computed distortions represented by each term of Eq. (28) (see text) relative to the �true� image (top-left panel) assuming ULF
imaging parameters of B0=1 · 10�4 T, max |g| = 50 · 10�6 T/m. The panels represent only the spin density in the �true� image that is distorted by
concomitant gradients highlighting the importance of accounting for these effects in any inverse applied to ULF data. While the distortions in panel
A are commonly corrected (with less accurate description of the Dxm) in generating MRI images, the distortions illustrated in panels B–D and
correction methodology is derived here for the first time.
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gradients where the practical effect of each term is illus-
trated by a computed graphical image distortion. We
compared the distortions resulting from the model pre-
sented here to previously derived models and to the ex-
act solution. We demonstrated that image distortions at
ULF are insufficiently approximated by previous models
of concomitant gradients and a more precise descrip-
tion, as outlined here, must be used to correct for these
effects to realize high-quality images. We observe that in
the ideal case, transverse components of the gradients
dBz/dx, dBz/dy depend only on z, thus the effect of con-
comitant gradients is revealed in 3D and can be avoided
in true 2D objects, by placing the object in z = 0 plane
and using dBz/dx, dBz/dy gradients.

Conventional MRI has pushed the limits of high-field
imaging to enhance signal-to-noise and resolution. Low-
and ultra-low field MRI measured by SQUID sensors
has recently attracted attention because of a broad range
of potential benefits including smaller susceptibility arti-
facts, narrow NMR linewidths, reduced field homogene-
ity requirements, simultaneous detection of multiple
nuclei, and the prospect of systems with reduced cost
and size. ULF MRI also enables imaging of samples
containing metallic materials and even inside of metallic
containers [9].

A significant goal of our work is to integrate ULF
MRI with sub-millisecond temporal resolution biomag-
netic measurements such as magnetoencephalography
(MEG) [23]. Simultaneous acquisition of MEG (and
other biomagnetic data) and anatomical data will enable
superposition of functional and anatomical data with-
out the error inherent with current techniques of co-lo-
calizing data sets from separate MEG and MRI
measurements. This advance could revolutionize func-
tional brain source localization accuracy for both
MEG and EEG.
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